SEP #1: Procedures for Scilab Enhancement Proposals

SEP: #1

Title: Procedure for Scilab Enhancement Proposals
Version: 1.0

Author: Sylvestre Ledru <sylvestre.ledru @scilab.org>
State: Draft V4

Type: Procedure

Scilab-Version: All

Vote:"No: discussions and suggestions"

Created: Monday, 01 december 2008

Abstract

The subject of this SEP is to explain the principles behind SEPs (Scilab Enhancement Proposals),
how to write them, and answer typical questions about rules, especially about adding or removing
features in the Scilab version distributed by the consortium (FAQ)...

Rationale

Before introducing the SEP idea, there was no clear and transparent process for adding or removing
features in Scilab. It was done internally in the Scilab consortium in an unformal way.

Because more and more contributors are involved into the project and also for transparency reasons,
there is a need to define better processes explaining how the consortium and the community can
make the software evolve in a common direction.

Scilab is also a programming language. Thousands of functions are available to users.

Evolutions are just standard in the lifecycle of a language/software like Scilab. The consortium and
contributors feel the need to clearly explicit these evolutions, how they happen, how to suggest a
new one...

Scilab Enchancement Proposals (SEPs) are introduced in order to formalize this process in an easy
and efficient way.

Changes requiring a SEP to be written:
e Addition of new functions
e Addition of new features (a set of functions for example)
e Change of the type of an input/output argument
e Addition/Removal of an input argument from an existing function
e Addition/Removal of an output argument from an existing function

e Deletion of an existing function from the public interface (the public interface is the list of
functions which are documented, i.e. for which there exist a help file)

e Change of the behaviour of a function, for instance improvement of the underlying
algorithm, modification of tolerances on results, change in the output format of any value,


mailto:sylvestre.ledru@inria.fr

etc.
e Addition of new non-optional input argument to a function

e Any change that make an existing test (non regression, bug fixing) fail and in need of an
update.

e Any change concerning the rules described in the present SEP#1

A SEP is not mandatory in any other situation. It is however recommended to write a SEP whenever
the change in sight is more than trivial. Assessing where the exact limit is is left to common sense.

SEP use cases
A SEP can be used in two ways:

1) A Scilab developer/contributor (this includes any member of the operational team) needs to
introduce a new function into Scilab.

2) A lambda user needs a new feature to be introduced into Scilab. He will write a SEP to explain
exactly what he wants. The feature could be developed either by the Scilab consortium, or by
a member of the Scilab consortium, or by any other contributor.

Steps

I. Send an email to the Scilab developer mailing list explaining what would be the feature (to
know if anyone is already working on it, if there is not already a solution...).

Write your SEP (see the appropriate section below about this point)
Send the SEP to the Scilab developer mailing list
Wait for feedback/updates

Discuss

A O i

Iterate to the point 3 until a consensus is reached on the SEP.

Definition of a consensus: consensus is reached on the SEP when someone proposes on the
dev list that consensus has been reached, and no one contradicts the assertion within three
working days.

In case it becomes clear that no consensus can be reached, call for a vote (see the section
dedicated to votes below)

7. Start the development (if not already done and included in the SEP as an implementation
proposal)

8. Update the SEP in order to state that it has been accepted and implemented (in which
version of Scilab, if changes to the specification have been needed)

Writing a SEP

A SEP is a specification of a proposed change or new feature in Scilab. The language used to write
SEPs must be English.

OpenOffice format is recommended. Other open formats are accepted. SEPs cannot be stored under
any closed format (MS Word for instance).

It is pretty easy and straightforward to write a SEP. A SEP template is available in the SEP directory



of the Scilab repository and shall mandatorily be used: just fill in the blanks. Additional sections not
necessarily present in the template may be added whenever it is felt necessary.

Examples of optional sections in SEPs:

Implementation

Say a few words about how you intend to implement the feature. This section should be
understandable by someone having a minimum knowledge of the internals. Don't explain
everything from basics but put focus on the important points dealing with HOW the change
will be implemented in the pre-existing codebase.

Use case
Typical use cases of a new feature
Alternatives

Explain here what other possible paths have been explored, why they have been rejected,
what were the arguments for the decision. State what were the alternate options, either in the
feature itself, or the way it is implemented.

Compatibility

Stress here any compatibility issue with respect of Scilab versions. For instance if a new
feature uses function readmymind available only from Scilab 6, then this section should state
that the change proposed by the SEP is not compatible with Scilab 5.x. or below.

Also, the compatibility section should analyze any impact on the user's existing scripts. Non
regression and backwards compatibility should be the rule. If this rule is broken by the
proposed change, this MUST be said clearly in the SEP (and the "Compatibility" section is
therefore no longer optional).

Limitations and drawbacks

Clearly state any limitation introduced by the changes summed up in the SEP. For instance, a
new function readmymind will be able to read the developer's mind, but not the users's mind.
This must be explained.

Also drawbacks should be highlighted, such as any caveat resulting from a new feature, any
risk of breaking user's existing scripts, etc.

Still <TODO>
List here any topics not yet dealt with that the SEP need to clarify.

Detailed reference implementation
If the feature does not require too many lines of code, it is possible to put the full
implementation inside the SEP. Unicode diffs are preferred.

A reference implementation of the proposal is in most of the cases a good idea to provide at
SEP release time since it will allow other contributors to try the idea. The implementation
may however be provided separately.

Unitary tests
Some unitary tests of the code would be appreciated

About SEPs contents:

Profile consistency
When you are writing a SEP about a feature similar to others already available in Scilab,
please try to keep as much as possible a strong consistency.



String or plotting functions are good examples. In both functions strstr and strsplit, the
haystack is the first input argument.

Voting
Voting is the last resort action when no consensus can be reached.

In such a case, voting is called on the developers mailing list. The voting period starts at the moment
the call for votes is sent to this list. The duration of the voting period must be at least a full calendar
week. The person calling for the vote may however select a longer voting period in his mail calling
for the vote.

People that have the right to vote are exactly those that have write access to the Scilab repository.
Among these people, no vote is more important than any other vote. There is no possible veto by
anybody. One person has exactly one voice, no more, no less.

Votes are expressed publicly on the developer's mailing list.
Valid votes are: YES, NO, BLANK. (BLANK is the same as not voting at all).

A SEP is accepted whenever it receives at least 2/3 of the votes cast (not votes from the 2/3 of the
people that can vote). Otherwise the SEP is rejected.

SEP workflow

Draft (pending discussion, no consensus reached, or currently subject to voting — Increment
SEP version any time it receives any change reflecting the ongoing discussion)

I
Accepted  (consensus reached, or positively voted, possibly no implementation yet)
or Rejected  (consensus for NO, or negatively voted)
I

Final (spec. update done reflecting comments and changes discussed on the dev list,
possibly still no implementation yet)

Integrated  (the Scilab version including the feature must be mentioned)

How is the proposed change going to be incorporated in the standard
distribution of Scilab ?

When consensus could be reached, or when no consensus could be reached but the vote was
successful, the change can be integrated the way it has been specified in the SEP in the standard
Scilab distribution. For legal reasons, the author of the implementation in Scilab must have signed
the developer agreement. The originator of a SEP however may be another person, not subject to the
terms of this agreement.

In no consensus could be reached, or in case of a negative vote, the change proposed by the SEP can
not be integrated in the standard Scilab distribution. In such a case, there are other possibilities for
making the feature available, such as creating a toolbox or use a (future) packaging system which
will enable the diffusion of the features which have not been included in the standard Scilab
distribution.



The procedure concerning the inclusion of the code into the official Scilab has been determined yet
and should be the object of a new SEP in the future.

Storage of SEPs and version control

SEPs are stored in the same GIT repository as Scilab in the directory git.repository/SEP/. If you
don't have write permission on the repository, please send an email to the developer mailing list,
someone will push it for you.

Changelog

1.0 — Sylvestre Ledru <sylvestre.ledru @scilab.org> Initial version

Copyright
This document has been placed under the license CeCILL-B.


mailto:sylvestre.ledru@scilab.org

	SEP #1: Procedures for Scilab Enhancement Proposals
	Abstract
	Rationale
	SEP use cases
	Changelog
	Copyright


