<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><meta http-equiv=Content-Type content="text/html; charset=utf-8"><meta name=Generator content="Microsoft Word 12 (filtered medium)"><!--[if !mso]><style>v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style><![endif]--><style><!--
/* Font Definitions */
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
{font-family:Tahoma;
panose-1:2 11 6 4 3 5 4 4 2 4;}
@font-face
{font-family:Verdana;
panose-1:2 11 6 4 3 5 4 4 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0cm;
margin-bottom:.0001pt;
font-size:12.0pt;
font-family:"Times New Roman","serif";}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:blue;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:purple;
text-decoration:underline;}
span.EmailStyle17
{mso-style-type:personal-reply;
font-family:"Calibri","sans-serif";
color:#1F497D;}
.MsoChpDefault
{mso-style-type:export-only;
font-size:10.0pt;}
@page WordSection1
{size:612.0pt 792.0pt;
margin:70.85pt 70.85pt 70.85pt 70.85pt;}
div.WordSection1
{page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body bgcolor=white background="https://img.web.de/v/p.gif" lang=FR link=blue vlink=purple><div class=WordSection1><p class=MsoNormal><span lang=EN-US style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'>Hi<o:p></o:p></span></p><p class=MsoNormal><span lang=EN-US style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><span lang=EN-US style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'>I do as follow … but maybe there’s another way !<o:p></o:p></span></p><p class=MsoNormal><span lang=EN-US style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><span lang=EN-US style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'> F_mean = mean(experience(:,2));<o:p></o:p></span></p><p class=MsoNormal><span lang=EN-US style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'> </span><span lang=EN-US style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'>SSE = 0;<o:p></o:p></span></p><p class=MsoNormal><span lang=EN-US style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'> SST = 0;<o:p></o:p></span></p><p class=MsoNormal><span lang=EN-US style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'> SSE = norm ((F_fit(:,2) - experience(:,2))^2) ; ……. you can use sum instead of norm<o:p></o:p></span></p><p class=MsoNormal><span lang=EN-US style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'> SST = norm((F_mean - experience(:,2))^2) ;<o:p></o:p></span></p><p class=MsoNormal><span lang=EN-US style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><span lang=EN-US style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'> R_square = 1 - (SSE / SST);<o:p></o:p></span></p><p class=MsoNormal><span lang=EN-US style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal style='text-indent:35.4pt'><span lang=EN-US style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'>Where “experience” are the experimental data / F_fit are the results from you’re<o:p></o:p></span></p><p class=MsoNormal style='text-indent:35.4pt'><span lang=EN-US style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal style='text-indent:35.4pt'><span lang=EN-US style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'>Paul<o:p></o:p></span></p><p class=MsoNormal style='text-indent:35.4pt'><span lang=EN-US style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><span lang=EN-US style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'><o:p> </o:p></span></p><div><div style='border:none;border-top:solid #B5C4DF 1.0pt;padding:3.0pt 0cm 0cm 0cm'><p class=MsoNormal><b><span style='font-size:10.0pt;font-family:"Tahoma","sans-serif"'>De :</span></b><span style='font-size:10.0pt;font-family:"Tahoma","sans-serif"'> XMMS2010@web.de [mailto:XMMS2010@web.de] <br><b>Envoyé :</b> lundi 6 décembre 2010 21:20<br><b>À :</b> users@lists.scilab.org<br><b>Objet :</b> [scilab-Users] Linear regression and R-squared<o:p></o:p></span></p></div></div><p class=MsoNormal><o:p> </o:p></p><div><p class=MsoNormal style='background:white'><span style='font-size:9.0pt;font-family:"Verdana","sans-serif";color:black'>Hi,<br><br>using "reglin" or "regress" a linear regression of measurement data can be done. But how is it possible to get R-squared of the regression as a parameter for the "goodness of fit"? Is there another function for doing this?<br><br>Thanks<br><br>XMMS2010 <o:p></o:p></span></p></div><p class=MsoNormal style='margin-bottom:12.0pt'><span style='font-size:9.0pt;font-family:"Verdana","sans-serif";color:black'> <o:p></o:p></span></p><table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0><tr><td style='background:black;padding:0cm 0cm 0cm 0cm'><p class=MsoNormal><img width=1 height=1 id="_x0000_i1025" src="https://img.web.de/p.gif"><o:p></o:p></p></td></tr><tr><td style='padding:0cm 0cm 0cm 0cm'><p class=MsoNormal style='line-height:12.75pt'><span style='font-size:9.0pt;font-family:"Verdana","sans-serif"'>WEB.DE DSL Doppel-Flat ab 19,99 €/mtl.! Jetzt auch mit <br>gratis Notebook-Flat! <a href="http://produkte.web.de/go/DSL_Doppel_Flatrate/2"><b>http://produkte.web.de/go/DSL_Doppel_Flatrate/2</b></a><o:p></o:p></span></p></td></tr></table><p class=MsoNormal><o:p> </o:p></p></div></body></html>