<br><br><div class="gmail_quote">On Fri, May 20, 2011 at 2:15 PM, Ginters Bušs <span dir="ltr"><<a href="mailto:ginters.buss@gmail.com">ginters.buss@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex;">
<br><br><div class="gmail_quote"><div><div></div><div class="h5">On Fri, May 20, 2011 at 2:09 PM, Ginters Bušs <span dir="ltr"><<a href="mailto:ginters.buss@gmail.com" target="_blank">ginters.buss@gmail.com</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
Dear all,<br><br>Let's integrate:<br><br>function y=f(x, a, sigma),y=(1/sqrt(2*%pi))*log(abs(a+sigma*x))*exp(-(x^2)/2),endfunction<br><br>out=intg(-1e+2,1e+2,list(f,1,.1))<br><br>out=8.605D-49 <br><br>but Wolfram Alpha gives out= -0.111<br>
<br></blockquote><blockquote class="gmail_quote" style="margin:0pt 0pt 0pt 0.8ex;border-left:1px solid rgb(204, 204, 204);padding-left:1ex">which is a totally different answer. <br><br>I've noticed that intg and integrate incline to give values close to zero when boundaries tend to infinity. So, I trust Wolfram Alpha more. How to get around the apparent mistakes in intg, integrate (particularly, I'm interested in indefinite integrals)?<br>
<br>Gin.<br><br></blockquote></div></div><div>Pardon, Wolfram alpha gives -0.005; if the 2nd argument 0.1 is increase to 0.4, then intg gives 1.555D-47, and Wolfram Alpha gives -0.111, the difference increases.<br></div>
</div>
</blockquote></div><br>ok, for normal distribution I found a cure - folded normal dist (<a href="http://en.wikipedia.org/wiki/Folded_normal_distribution">http://en.wikipedia.org/wiki/Folded_normal_distribution</a>) that avoids the abs() in the integral; but what about other cases?<br>
<br><br>