Hi<br><br>okay i have made the changes and the reaction curves are looking better but for some reason i still get no reaction on the last three curves. It is just showing a straight line. can it be that i have choosen to plot the wrong type of graph? Maybe because of a time value or to much ODE"s?<br>
<br><div class="gmail_quote">On Wed, Oct 5, 2011 at 10:24 PM, Jaundre Venter <span dir="ltr"><<a href="mailto:jaundreventer@gmail.com">jaundreventer@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex;">
Thank you very much Adrien.<br><br>always nice if someone can explain to you where your problems are and why. Thanks<br><br>Was there any other problems you saw that i have to be aware of?<div><div></div><div class="h5"><br>
<br><div class="gmail_quote">On Wed, Oct 5, 2011 at 5:38 PM, Adrien Vogt-Schilb <span dir="ltr"><<a href="mailto:vogt@centre-cired.fr" target="_blank">vogt@centre-cired.fr</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div bgcolor="#FFFFFF" text="#330000">
Hi<br>
<br>
When you use ode, it's ok, if say, dx(1) depends on dx(4).<br>
but you still have say that to scilab properly, something like:<br>
<br>
function dx = f(t,x)<br>
<span style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">dx(6)=((F+Fab+Floss)*<font color="#000000">(x(2</font>))),
// culture Volume V</span><br>
<span style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">dx(1)=(((mu)*(x(1)))-(((x(1))/(x(6)))*((<font color="#000000">dx(6)</font>)))*(CO)*(</span><span style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)"><font color="#000000">x(2</font>))</span><span style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">)), //biomass concentration X</span><br>
and so one<br>
<br>
note that because i had to know dx(6) to compute dx(1) i just
computed dx(6) before dx(1): no problem. and note that i used x(2).
The idea of the ode is to compute dx from x!<br>
<br>
make sure you understand that using dx_6 instead of dx(6), your ODE
solver is not updating dx_6 at each time step, it is using the
initial and only dx_6 forever. That's why your last varaibles do not
move, somehow their speeds are never updated.<br>
for instance, <span style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">dx(6)=((F+Fab+Floss)*(HION)), //
culture Volume V <font color="#000000">is constance in time (i
guess)</font></span><div><div></div><div><br>
<br>
<br>
On 05/10/2011 15:00, Jaundre Venter wrote:
<blockquote type="cite">Hi Adrien<br>
<br>
i am new to SCILAB! I just want to say that.<br>
<br>
Yes dx_1 is equal to dx1 but the only reason why i have programmed
it like that is becasue the ODE's looks as follows - (see word
file attached that can explain the ODE"s better. with regards to
the HION and CO it actually refers to [H+] and CO2 as you said.
the only reason why n multiplied HION and CO wit hsome ODE's is
because some does have a influence on some ODE's.<br>
<br>
This is the first time i am working with SCILAB thus i am
struggling to understand how SCILAB wants the code so that all 9
ODE's are shown and so that the ODE's that is having a effect on
other does happen. I though if you refer to dx(1) for example in a
other ODE it means that SCILAb will know the dx(1) has a influence
on the other ODE.<br>
<br>
The main goal of my assesment is to deliver similar results
obtained from MATLAB on SCILAB. all i got was how the grpahs
should look like and the ODE's.<br>
<br>
<div class="gmail_quote">On Wed, Oct 5, 2011 at 2:43 PM, Adrien
Vogt-Schilb <span dir="ltr"><<a href="mailto:vogt@centre-cired.fr" target="_blank">vogt@centre-cired.fr</a>></span>
wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div bgcolor="#FFFFFF" text="#330000"> Hi<br>
<br>
Try to isalote your problem<br>
if i understood well, the following code
<div><br>
<br>
<span style="color:rgb(51, 51, 255)">// initial values </span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">x0=[0.1, 1e-5, 0, 15,
1.16, 100,0,297,0.5]';</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">t=0:0.005:400;</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">y=ode(x0, 0, t, f);</span><span style="background-color:rgb(255, 255, 255);color:rgb(51, 51, 255)"><br>
<br>
</span></div>
returns y such that sum(y(6:9,:)>x0) == 0 ?<br>
if this is true, we do not need the plots to solve the
problem<br>
can you check that ?<br>
<br>
I believe the f function is erroneous.<br>
It seems that dx_1 should be equal to dx(1) at each time
step, and that HION should be equal to x(2) at each time
step, etc.<br>
<br>
in other terms, some of your phisical variables seem to be
represented by to variables (i am guessing HION=[H+] and
x(2)=[H+] also) but scilab does not have any chance to know
that.<br>
if my guess is right, you have to rewrite the f function in
a way that eliminates all references to HION, dx_1, dx_6 and
so on
<div>
<div><br>
<br>
On 05/10/2011 14:27, Jaundre Venter wrote:
<blockquote type="cite">Hi all<br>
<br>
Can someone please explain to me the following:<br>
<br>
I am busy with a project of simulation the production
of penicillin in a bio reactor. Now i have 9 ODE's
which i want to simulate.<br>
<br>
now for some reason the last three graphs i am getting
doesn't show any response what so ever. i am using the
following code.<br>
<br>
<span style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">dx(1)=(((mu)*(x(1)))-(((x(1))/(x(6)))*((dx_6)))*(CO)*(HION)),
//biomass concentration X</span><br style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">
<span style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">dx(2)=((z*(((mu)*(x(1)))-(((F)*(x(1)))/(x(6)))))+(QQ)),
//hydrogen ion concentration H+</span><br style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">
<span style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">dx(3)=((((mupp)*(x(1)))-((K)*(x(3)))-((x(3))/(x(6)))*(dx_6))*(HION)),
//Penicilin concentration P</span><br style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">
<span style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">dx(4)=((-((mu)/(Yxs))*(x(1)))-(((mupp)/(Yps))*(x(1)))-((mx)*(x(1)))+((Fsf)/(x(6)))-((x(4)/(x(6)))*(dx_6))),
//Substrate concentration S</span><br style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">
<span style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">dx(5)=(-(((mu)/(Yxo))*(x(1)))-(((mupp)/(Ypo))*(x(1)))-(((mo))*(x(1)))+((kla)*(cll-(x(5))))-(((x(5))/(x(6)))*(dx_6))),
//dissolved oxygen</span><br style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">
<span style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">dx(6)=((F+Fab+Floss)*(HION)),
// culture Volume V</span><br style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">
<span style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">dx(7)=(((rq1)*(dx_1)*(x(6)))+(rq2)*(x(1))*(x(6))),
//Heat generation Qrxn</span><br style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">
<span style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">dx(8)=((((F)/(sf))*(Tf-(x(8))))+(1/((x(6))*(pcp)))*(QT)),
// Temperature T</span><br style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">
<span style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">dx(9)=(((a1)*(dx_1))+((a2)*(x(1)))+(a3)),
// CO2 evolution, CO2</span><br style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">
<span style="background-color:rgb(255, 255, 255);color:rgb(51, 102, 255)">endfunction</span><br style="background-color:rgb(255, 255, 255)">
<br>
now when i ask for plotting the graphs i am using the
following.:<br>
<br>
<span style="color:rgb(51, 51, 255)">// initial
values </span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">x0=[0.1, 1e-5, 0,
15, 1.16, 100,0,297,0.5]';</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">t=0:0.005:400;</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">y=ode(x0, 0, t,
f);</span><span style="background-color:rgb(255, 255, 255);color:rgb(51, 51, 255)"></span><br style="color:rgb(51, 51, 255)">
<br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">// the plots of
each variable</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">da.title.text="BIOMASS
CONCENTRATION"</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">da.x_label.text="Time,
hours";</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">da.y_label.text="X,g/l
";</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">scf(1);clf;
//Opens and clears figure 1</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">plot(t,y(1,:))</span><br style="color:rgb(51, 51, 255)">
<br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">da.title.text="HYDROGEN
ION H+ CONCENTRATION"</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">da.y_label.text="H+,mol/l
";</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">scf(2);clf;
//Opens and clears figure 2</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">plot(t,y(2,:))</span><br style="color:rgb(51, 51, 255)">
<br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">da.title.text="PENICILLIN
CONCENTRATION"</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">da.y_label.text="P,g/l
";</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">scf(3);clf;
//Opens and clears figure 3</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">plot(t,y(3,:))</span><br style="color:rgb(51, 51, 255)">
<br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">da.title.text="SUBSTRATE
CONCENTRATION"</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">da.y_label.text="S,g/l
";</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">scf(4);clf;
//Opens and clears figure 4</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">plot(t,y(4,:))</span><br style="color:rgb(51, 51, 255)">
<br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">da.title.text="DISSOLVED
OXYGEN CONCENTRATION"</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">da.y_label.text="C_l,g/l
";</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">scf(5);clf;
//Opens and clears figure 5</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">plot(t,y(5,:))</span><br style="color:rgb(51, 51, 255)">
<br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">da.title.text="CULTURE
VOLUME"</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">da.y_label.text="V,l";</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">scf(6);clf;
//Opens and clears figure 6</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">plot(t,y(6,:))</span><br style="color:rgb(51, 51, 255)">
<br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">da.title.text="HEAT
OF REACTION"</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">da.y_label.text="Qrxn,cal";</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">scf(7);</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">clf; //Opens and
clears figure 7</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">plot(t,y(7),:)</span><br style="color:rgb(51, 51, 255)">
<br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">da.title.text="TEMPERATURE"</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">da.y_label.text="T,Kelvin";</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">scf(8);</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">clf; //Opens and
clears figure 8</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">plot(t,y(8),:)</span><br style="color:rgb(51, 51, 255)">
<br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">da.title.text="CO2
EVOLUTION"</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">da.y_label.text="CO2,mmol/l/";</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">scf(9);</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">clf; //Opens and
clears figure 9</span><br style="color:rgb(51, 51, 255)">
<span style="color:rgb(51, 51, 255)">plot(t,y(9),:)</span><br>
<br>
Am i doing something wrong? before the ODE's i have
just programmed the initial values and constants :<br>
<br>
f<span style="color:rgb(51, 102, 255)">uncprot(0);</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">function dx =
f(t,x)</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">K1=1.0e-10
//mol/l</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">K2=7.0e-05
//mol/l</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">Kx=0.15
// Contois saturation constant, g/l</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">Kox=2e-02
// oxygen limitation constant</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">mux=0.092
// maitenance coefficient on subsrate</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">p=3
//constant</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">Kp=0.0002
// inhibition constant</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">Kop=2e-02
// oxygen limitation constant</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">K=0.04 //
Penicillin hydrolysis constant, per h</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">Yxs=0.45 //
yield constant,g biomass/g glucose = dimensionless</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">Yps=0.90 //
yield constant, g pinicillin/ g glucose =
dimensionless</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">mx= 0.014 //
Maintenance coefficient on substrate, per h </span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">Yxo=0.04 //
yield constant, g biomass/g oxygen = dimensionless</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">Ypo=0.20 //
yield constant, g penicillin/g oxygen= dimensionless</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">mo= 0.467 //
maintenance coefficient of oxygen, per h</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">mup=0.0005 //
specific rate of penicilline production (per h)</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">sf=600 // Feed
substrate concentration, g/l</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">kla=23 //
function of agitation power input and oxugen flow
rate, dimensional</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">cll=1.16 //
dissolved oxygen concentration, g/l</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">Cab=3 //
concentrations in both solutions</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">Fa=5 // acid
flow rate, l/h !! </span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">Fb=5 //
base flow rate, l/h !! </span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">delta_t=0.01
// time step in digital PID controller - arbitrary
value!!!</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">z=10e-5 //
constant</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">F=0.042
// feed substrate flow rate l/h </span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">T0=273
// temperature at freezing, K</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">Tv=373 //
temperature at boiling</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">T=298 // feed
temp of substrate</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">h=(2.5e-4)
// constant</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">Floss=(x(6)*(h)*(exp(5)*((T-T0)/(Tv-T0))))</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">Fab=Fa+Fb //
volume increase due to influx of acid Fa and base Fb</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">Fsf=((sf)*(F))</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">kg= 7e-3 //
Arrhenius constant for growth</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">kd=10e33 //
Arrhenius constant for cell death</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">Eg= 5100 //
Activation energy for growth, cal/mol</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">Ed= 50000 //
Activation energy for cell death, cal/mol</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">R= 1.987 //
gas constant, cal/mol k</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">T= 297 //
Temperature</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">RT= R*T</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">alpa= 70 //
constant in Kla</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">betha= 0.4 //
constant in Kla</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">Pw= 30 //
Agitation power input, W</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">fg= 8.6 //
Flow rate of oxygen</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">V=100 //
Volume</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">QE=
((kg*exp(-(Eg/RT)))-(kd*exp(-(Ed/RT))))</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">kla=
alpa*((sqrt(fg)*(Pw/x(6)))^betha)</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">mu
=(((mux)/(1+((K1)/(x(2)))+((x(2))/(K2))))*((x(3))/(((Kx)*(x(1)))+(x(3))))*((x(5))/(((Kox)*(x(1)))+(x(5))))*(QE))
// Specific growth rate</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">mupp =
((mup)*((x(4))/((Kp)+(x(4))+(x(4)^2)/(K1)))*((x(5)^p)/((Kop)*(x(1)))+(x(5)^p)))
// Specific penicillin production rate</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">B
=(((1e-14/x(2)-x(2))*x(6)-Cab*(Fa+Fb)*delta_t)/(x(6)+(Fa+Fb)*delta_t))</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">QQ
=((-B+sqrt(B^2+4e-14))/2-(x(2)))*(1/delta_t)</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">dx_6 =
(F+Fab+Floss) //Culture Volume V</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">dx_1 =
(((mu)*(x(1)))-((x(1))/(x(6)))*(dx_6)) //biomass
concentration X</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">rq1 = 60 //
yield of heat generation, cal/g biomass</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">rq2 = 1.6783e-4
// Constant, cal/g biomass h</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">Tf = 296 //
substrate feed temperature, Kelvin</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">a = 1000 //
heat transfer coefficient of cooling/heating liquid,
cal/h degree C</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">b = 0.60 //
constant</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">Fc=0.1 //
Cooling water flow rate, not sure about value, l/h</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">pcCpc = 1/2000
// Density times heat capacity of cooling liquid,
per l degree C</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">pcp = 1/1500
// density times heat capacity of medium</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">QT =
((x(7)-(((a)*(Fc^b+1))/((Fc)+((a)*(Fc^b))/2*pcCpc))))</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">a1=0.143 //
constant relating CO2 to growth, mmol CO2/g biomass</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">a2=4e-7 //
Constant relating CO2 to mainteneance energy, mmol
CO2/g biomass h</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">a3=1e-4 //
Constant relating CO2 to penicillin production, mmol
CO2/l h</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">CO=
(((a1)*(dx_1))+((a2)*(x(1)))+(a3)), // CO2
evolution, CO2</span><br style="color:rgb(51, 102, 255)">
<span style="color:rgb(51, 102, 255)">HION=((z*(((mu)*(x(1)))-(((F)*(x(1)))/(x(6)))))+(QQ))</span><br>
<br>
Thanks.<br>
</blockquote>
<br>
<br>
</div>
</div>
<font color="#888888">
<div>-- <br>
Adrien Vogt-Schilb (Cired) <br>
Tel: (+33) 1 43 94 <b>73 77</b></div>
</font></div>
</blockquote>
</div>
<br>
</blockquote>
<br>
<br>
<div>-- <br>
Adrien Vogt-Schilb (Cired) <br>
Tel: (+33) 1 43 94 <b>73 77</b></div>
</div></div></div>
</blockquote></div><br>
</div></div></blockquote></div><br>