## **SCILAB 5.4.1 Report on Linear Systems**

# **Linear Systems in S-Domain:**

#### **EXAMPLE 1**

- Consider a Transfer function  $H(s) = \frac{1}{(s+1)}$ . The bode plot of magnitude is obtained by plotting  $20 \cdot log_{10}(H(j\omega))$  v/s  $\omega$  in logarithmic scale.
- The prediction from approximation in standard practice on paper will obtain the break-way at 20db slope at  $\omega=1$  for  $H(s)=\frac{1}{(s+1)}$ . This visualized in figure 1 below.

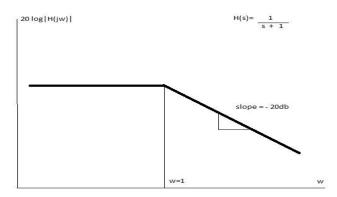



Figure 1

- The bode plot for H(s) is obtained in SCILAB code as shown in appendix- I:
- The bode plot returned in SCILAB depicted in figure 2:

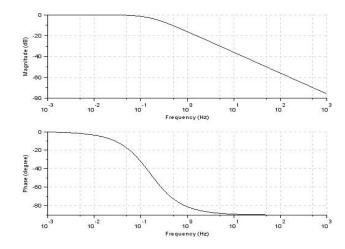



Figure 2

• Observation: The theory predicts the break away point with -20db slope at  $\omega=1$  or  $10^0$  but the plot returned by scilab predicts the break away point with -20db slope at  $\omega=0.1$  or  $10^{-1}$ 

#### **EXAMPLE 2**

- Consider a Transfer function  $H(s) = \frac{1}{(\frac{s}{0.1} + 1)}$ . The bode plot of magnitude is obtained by plotting  $20 \cdot log_{10}(H(j\omega))$  v/s  $\omega$  in logarithmic scale.
- The prediction from approximation in standard practice on paper will obtain the break-way at -20db slope at  $\omega$ =0.1 for  $H(s)=\frac{1}{(\frac{s}{0.1}+1)}$ . This visualized in figure 3 below.

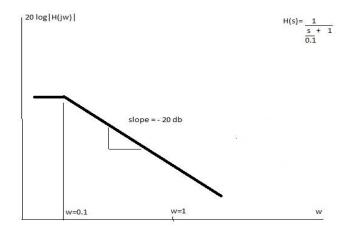



Figure 3

- The bode plot for H(s) is obtained in SCILAB code as shown in appendix-II:
- The bode plot returned in SCILAB depicted in figure 4:

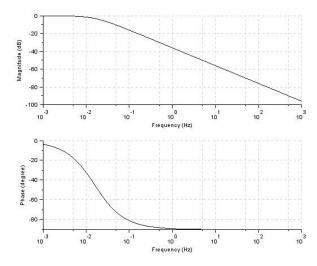



Figure 4

• Observation: The theory predicts the break away point with -20db slope at  $\omega=0.1~or~10^{-1}$  but the plot returned by scilab predicts the break away point with -20db slope at  $\omega=0.01~or~10^{-2}$ .

### **Author Intention:**

My intention is to obtain a logical/mathematical reason for the difference in GAIN BODE PLOT from theoretical prediction (that I have understood) and SCILAB prediction.

#### Vijay Gopal

Email: aero.g.vijay@gmail.com

### Appendix-I

```
clear;
clc;
s=poly(0,'s');
N=1;
D=(s+1);
TF=syslin('c',N/D);
bode(TF);

Appendix - II

clear;
clc;
s=poly(0,'s');
N=1;
D=(s/0.1)+1;
TF=syslin('c',N/D);
```

bode(TF);

**Note:** Command bode(TF) and gainplot(TF) are producing same results which deviated from authors prediction.