Short introduction to the Scilab toolbox
“wavelib”

Alexander Stoffel

Institute of Communication Engineering
Faculty of Information, Media and Electrical Engineering
Cologne University of Applied Sciences
alexander.stoffel @th-koeln.de

July 25, 2013

Note: This introduction essentially relies on section 24 of the german introduction
“Kurzeinfithrung in Scilab” available at
http://alex.nt.fh-koeln.de/mapdf/scilabein.pdf

Contents
1 Getting started 2
2 Scaling functions and wavelets 2
3 Wavelet transforms for one dimensional signals 2
3.1 One step transforms 2
3.2 Cascaded transforms 3
4 Treatment of image data 5
4.1 Wavelet transforms for image data)
4.2 In- and output of image datao 6
5 Treating filters 9
6 Coding experiments 10
A Appendix 12
A.1 Treating audiodata 12

1 Getting started

The toolbox “wavelib” is available from
http://alex.nt.fh-koeln.de/wavelib.html

You will find there the link for downloading a archive file as well as a detailed instruction
how to install the toolbox. Note that you have to load the toolbox each time you restart
Scilab by executing the program “loader.sce” (the “builder.sce” has only to be executed
once). You can avoid manual loading using a startup file - you only have to put there
the command exec(.....loader.sce). For the detail, see the hints in the help pages chapter
“startup” (use the search facility of the help browser or type “help startup” in the console).

You get a list of the functions in the toolbox from the content of the corresponding
chapter in the left column of the help browser. Furthermore, you will find an example
program (file name “function name+ex.sce”) for each toolbox function in the toolbox
directory “examples” and there in the subdirectory corresponding to the chapter in the
help browser. For example you will find a sample program using the function psihut
in the file psihutex.sce in the subdirectory examples/functions. The path to the
toolbox directory is available as the content of the variable WLHOME. This means that you
may execute the example program typing

exec (WLHOME+’ /examples/functions/psihutex.sce’)

in the console.

A detailed description for each function is available in the help browser; you may also
get this description typing help function name in the console. Here only a short overview
on the most frequently needed functions of the toolbox is given.

2 Scaling functions and wavelets

You get the function values of the wavelet “CDF(3,5)” by y=psicdf35(x) and x may be
a vector. A plot of this function may be generated by

x=-3:0.01:4; y=psicdf35(x); plot(x,y);

You get the function values of the corresponding scaling functions by y=phicdf35(x)
Analogously the function values of the Haar are available by psihaar and the values
of the hat or CDF(2,2) wavelet by psihut. And you get the function values of the
corresponding scaling functions replacing ,,psi® by ,,phi‘.

3 Wavelet transforms for one dimensional signals

3.1 One step transforms

By y=sigwt(x,’Haar’) you get the normalized Haar wavelet transform of the vector x.
You will find the high pass coefficients d(k) in the “upper” half of the vector y. This
means, if the input vector x has N components, the high pass coefficients d(k) will be
the components of y with index % + 1 to N, and the low pass coefficients will be the
components of y with index 1 bis % This is shown in figure 1, where the numbering is

http://alex.nt.fh-koeln.de/wavelib.html

corrected to the usual range from 0 to N —1; remember that Scilab indices go always from
1 to N. Note that N has to be even, the transform is not implemented for an odd number
of input components of x. You obtain the original signal values from the coefficients y
by the inverse transform xr=sigwtinv(y,’Haar’). Note that you should not expect in
general that xr agrees exactly with the original input x due to roundoff errors.

You may choose the name of another wavelet as the second input parameter of sigwt ,
for insctance you get the wavelet transform with respect to the hat or CDF(2,2) wavelet by
y=sigwt (x, ’hat’), analogously the inverse transform is done by xr=sigwtinv(y, ’Hut’).
Table 1 shows which wavelet transforms are actually available.

x(k) y(k)
350

300:
200; 250
] 200
150 150
100
100 504
] : : Aot :
q 100 200 ‘ 30 400 50&] 600
-50- ‘ ‘
100 s(k) «—d(k-256) —

] \ \

100 200 300 460 500 600 -150-

0

Figure 1: One dimensional signal x (at the left row 500 of the test image “Lena”) and the
result of the wavelet transform y=sigwt(x,’Haar’) (at the right)

y(k)
600

500
400;
300;
200;
100;

o s o Arlw”wl“‘“ - " »k
q 100 ' 200] 300 400 500 600

|

|

I

1004 S0 1d3(k-64)1«d2(k-1 28) d, (k-256) |

-200—

Figure 2: Result of the 3 step der filter bank transform y=sigwt (x,’Haar’,3) appliedt
to the same input signal as in figure 1

3.2 Cascaded transforms

You may use the low pass output of the first step (for example the first half of the vector
+y=sigwt(x,’Haar’)+) as an input of the same transform and even repeat this procedure
several times. This may be done simply by y=sigwt(x,’Haar’,p) where p denotes the
number of cascades. The output of the high pass filter is always saved in the remaining
“upper”half (with the higher indices) of the vector. The low pass output will be in the
lowest part (smallest indices), it will be used as input in the next step. This makes it

wavelet name second parameter options default

Haar wavelet Haar n,u n
CDF(2,2), Hut CDF(2,2), CDF22, Hut, hat IT, ZP, VIn T
CDF(3,5) CDF(3,5), CDF35 IT, ZP T
DD(4,2), binlet ~ DD(4,2), DD42, bin IT, ZP, VI IT
DD(4,4) DD(4,4), DD44 IT, ZP T
DD(8,6) DD(8,6), DD86 IT, 7D T
AI(3,3) (av. int.) AI(3,3), AVI(3,3), AI33, AVI33 11, zp T
AI(5,3) (av. int.) AI(5,3), AVI(5,3), AI53, AVI53 rr, zp IT
AI(5,5) (av. int.) AI(5,5), AVI(5,5), AI55, AVI55 11, zp T
FBI, 9/7 FBI IT, 7P T
D4 (orthogonal) D4, Daub4, D(4) rr, zp, pe, gs(1d) gs(1d), rr(2d)
D6 (orthogonal) D6, Daub6, D(6) IT, ZP, pe pe
symlet sym pe, IT, zp pe
QN(4), quincunx quisu, quincunx is ignored

Table 1: Available wavelet transforms, the second and eventually the fourth parameter
(column “options”) have to be given as a string between single or double quotes. The
case is ignored, instead of 'DD42’ you may use 'dd42’. Note also the remarks in table 2.

necessary that the number of components of the input vector x has to be a multiple of
2P (p, the third parameter, the number of cascades). Otherwise you will get an error
message. Tghis leads to the following scheme of the output values in the output vector y:

type Scilab indices
di(k) | §+1 N
da(k) | T +1 z
dy(k) | & +1 a
L) | Bl e
sp(k) 1 £

Note that d,, (k) are the high pass output values and s,(k) the remaining low pass values.
An increasing index m signifies a more coarse scale. This is shown in figure 2. The
Scilab numbering starts at 1, but in the figure, the numbering is corrected to the usual
convention starting at 0.

The inverse Transformation xr=sigwtinv(y,’Haar’,p) furnishes the original signal
values but only up to anavoidable roundoff errors.

Replacing the parameter *Haar’ by ’hat’ one obtains the cascaded wavelet transform
(and its inverse) with respect to the hat or CDF(2,2) wavelet. Analogously one gets the
transform with respect with the other wavelet types shown in table 1. Remember that
the case for the wavelet type is ignored, you may indicate ’fbi’ as well as *FBI’ as the
second parameter.

A remark is in order concerning the fourth parameter for sigwt and sigwtinv denoted
“option” in table 1. It determines in general the treatment of the data at the boundary.
It is strongly recommended not to specify this parameter, in that case the default value is

used for which the best results are expected in the applications. You should only specify
this parameter where you are explicitly asked for, for instance where experiments with the
boundary conditions are intended. For the Haar wavelet this option determines whether
the normalized version (default, filter constants ﬂ:%\/ﬁ) or the unnormalized version (filter
constants j:% resp. 1) is used. Note that if you want to specify the fourth parameter,
you always have to give explicitly the third parameter, even if you want to set the number
of cascades to its default value 1.

For those who are interested in the details for the fourth parameter, here an explicit
list of the signification of the different options.

rr’ (Reflection with repetition) Symmetric continuation by reflection with repetition at
the boundary. This is the default option for most wavelet types.

'zp’ (Zero padding) Continuation by 0 at the boundary (expressions in the formulae
referring to an index outside the used range as s(—1) are replaced by 0.

'pe’ Periodic continuation of the data at the boundary. This option is actually only
implemented for the orthogonal Daubechies wavelets D4, D6 and the symlet, it is
the default option for D6 and the symlet.

’vin’ (Vanishing moments) If H(z) has a p-fold zero at z = —1, special boundary filters
lead to a high pass output zero even at the boundary; analogously they lead to zero
low pass output even at the boundary. This option is only implemented for the
hat and the DD(4,2) wavelet and leads to numerical problems if the transform is
cascaded (third parameter in sigwt or sigwtinv greater than 1).

'n’ normalized transform, only admitted for the one dimensional Haar wavelet where this
option is the default. It leads to filter constants i%\/ﬁ

’u’ not normalized transform, only admitted for the one dimensional Haar wavelet, it
leads to filter constants :I:% and +1.

If you specify an invalid fourth paramter, it will be replaced by the default value, in
general with a warning. For the symlet you will get a warning specifying other parameter
values as the default ’pe’, as they may cause numerical problems. You may also consult
table 2 for the possible options.

4 Treatment of image data

4.1 Wavelet transforms for image data

Analogously to the transformation of one dimensional images you get the one step Haar
wavelet transform for image data by W=imwt (A, ’Haar’) and the inverse transform by
Ar=imwtinv(W,’Haar’). The image data should be in the matrix A whose number of
rows and columns has to be even. The wavelet coefficients are given by the matrix W in
the usual order, i.e. above at the left the HH subband as a result of a low pass filtering
in raw and colum direction. If N, denotes the number of raws and N, the number of
columns of A, the subband HH is the submatrix of matrix elements A;, with 1 < i < %
and 1 <k < NT You obtain this submatrix by the command HH=A(1:Nr/2,1:Nc/2).

wavelet type options default remarks

Haar n,u n for images only n
CDF(2,2), hat IT, Zp, Vvin IT
CDF(3,5) IT, 7P IT
DD(4,2), binlet IT, Zp, VIn IT
DD(4,4) and DD(8,6) IT, 7D IT
Al(n,m) (average interpolating) rr, zp T
FBI, 9/7 IT, ZP T
D4 (orthogonal) rr, zp, pe, gs (1d),
gs (1d) rr (2d)
D6 (orthogonal) IT, Zp, pe pe
symlet IT, Zp, pe pe only pe recommended
QN(4), Quincunx-Neville ignored only for images

Table 2: Possible values of the otional fourth input parameter, the “option”, which may
be specified for the functions sigwt, sigwtinv, imwt and imwtinv, compare also with
table 1.

By W=imwt (A, ’Haar’,p) you get the cascaded Haar wavelet transform with p steps
in scale and you get the corresponding inverse transform by Ar=imwtinvm(W, ’Haar’,p).
The number of rows and columns has to be a mutiple of 27. Analogously to the one
dimensional case you get the wavelet transform for other wavelets replacing the string
’Haar’ by the string belonging to the corresponding wavelet as is indicated in table 1.

For images there are wavelet transforms which have no one dimensional counterparts,
one of them is implemented and is chosen by ’Quisu’ or ’Quincunx’ as second parameter
of imwt and imwtinv. Note that this wavelet type may only be chosen if the number p of
cascades is even and it has to be specified as third parameter.

4.2 In- and output of image data

[A,head] = reimppm(’filename’); reads the image data of a file in PBM-, PGM- or
PPM file format, the result will be in the matrix A, the output variable head con-
tains the header of the file as matrix of strings. Note that the image data in A
will be in the format uint8 (positive integers with 8 bit). This may lead to un-
explainable results or error messages if you apply the usual arithmetic operations.
If you want to do calculations with the data in A, it is strongly recommended to
transform the data into the usual type by A=double(A) . You may specify the path
to your image file if this is not in the actual working directory, for instance by
[A,head]=reimppm(’wavedata/boats512.pgm’) ;note that you have to specify the
complete filename with the extension “.pgm”.

If only one return parameter is given, it contains the image data. Figure 3 shows a
gray scale picture and the corresponding matrix obtained by reimppm.

writepgm(’ filename’ ,A) writes the data of the matrix A interpreted as gray scale values
in an image file with name filename.pgm. The string ’filename’ shuold therefore not
contain the extension ,,.pgm“, but it may contain a path if the file should not be in
the actual working directory. The matrix elements of A should not be outside the

151 142 181 211 222 219 207 169
210 132 197 232 197 221 185 197
222 196 208 230 206 123 156 200
173 242 211 193 121 130 81 67
144 255 155 1 0 18 34 96
131 198 68 27 63 138 240 79
127 122 164 145 130 178 193 152
142 149 182 192 184 186 197 165

Figure 3: Reading a gray scale image (at the left) using reimppm, at the right the obtained
matrix (0 corresponding to black, 255 to white)

allowed range from 0 to 255.

imview(A) shows the data of the matrix A interpreted as gray scale values in a graphic
window. The matrix elements of A should not be outside the allowed range from 0 to
255. A string as second optional input parameter as in imview (A, ’my title’) will
add this string as title above the image. Note that imview changes the parameters
of the graphic window (for instance the color set). You may reset those parameters
using sdf () ; to its default values (for instance if you want to use the usual colors).
Note also that imview uses the whole actual graphic window (and changes its size
and position). Therefore it may not be used in a subwindow defined by subplot.
The following code example

A=zeros(512,512);

for i=1:512;for k=1:512;
A(i,k)=255*abs(sin(i*%pi/256)*cos (k*%pi/2566));

end;end;

imview(A)

generates the image shown in figure 4.

Figure 4: (512 x 512)-matrix with matrix elements a;, = |255 - sin (’—”) cos (k—”)’ inter-

256 256
preted as gray scale values

B=grvalues(A) transforms the data in the matrix A into the interval [0,255] such that
the minimal value is mapped to 0 and the maximal to 255. This is useful before

7

applying imview or writepgm where the data have to be in this interval. If dy,
is the valuze of the smallest, d,., the value of the largest matrix element of A, the
transformation is given by ¢ := 1 , h == —dpn - ¢ and

dmax—dmin

by = 255(c - ag, + h)

where the matrix elements of A are denoted by a;, and the elements of B by b;,. In
the particular case that dy.x — dnin is near to 0, all matrix elements b;, are put to
127. This will be the case if all elements of A are equal.

The following example shows the application of grvalues. The wavelet coefficients
resulting from a Haar wavelet transform will be transformed into the range of gray
scale values. This is done for each subband separately.

[A,header]=reimppm(’Testbilder/Marseille.pgm’);
W=imhaarwt (4) ;

bdi=size (W) ;

nrh=bdi(1)/2; nch=bdi(2)/2;

// gray values separately for the subbands:
HH=grvalues(W(1:nrh,1:nch));

GG=grvalues (W(nrh+1:2*nrh,nch+1:2*nch));
HG=grvalues (W(1:nrh,nch+1:2%nch));
GH=grvalues (W(nrh+1:2*nrh,1:nch));
B=[HH,HG;GH,GG] ;

clf(); imview(B);

The resulting submatrices have been put together into one matrix. The final result
and the original image are shown in figure 5.

Figure 5: Original image at the left, wavelet coefficients (using the Haar wavelet) trans-
formed into gray scale values by grvalues and shown by imview at the right

B=grayclip(A) also puts the values of the matrix elements of A into the range [0, 255],
but it cuts the values above 255 and setting them to 255 and it cuts the negative
values setting them to 0. Values which are already inside the desired interval [0, 255]
remain unchanged. This procedure is recommended if you consider the values out-
side [0, 255] as exceptions (for instance due to the Gibbs phenomenon) which should
not change the representation of the “normal” values.

5 Treating filters

Scilab permits to use polynomials and rational functions in a very intuitive way. You
have first to specify how you denote your polynomial variable. For filters this is usual z,
so you should start with
z=poly(0,’z’);
which initializes z as polynomial variable. Then you may define polynomials simply by
F=1-z+3%z"2-5%z"3
and the result will be shown in a way easy to read at the console:
F -

2 3
l1 -2 + 32 - 52

and G=(z-1) "5 is shown in the standard way

G =
2 3 - 5
-1+ 5z - 10z + 10z - 5z + z
In the context of wavelets we have to treat expressions like H(z) = —z+ 3+ 327! — 272
Trying the input H=-z+3+3%z" (-1) -z~ (-2) we may be a little disapointed by the output
H -
2 3
-1+ 32 + 32z -z
2
z

Scilab is treating the result as a rational function and brings it to the standard form as a
quotient of two polynomials. But this is undesired for filters, so showfilt (H, ’H’) helps

to get the usual representation
1 -1 -2
H(z)= -z + 3 + 3z - 2

The toolbox wavelib contains the following functions for calculations with filters and
their output:

F = ztrans(f,fkmin,z) performs the z-transform. f is a vector containing the filter
constants and fkmin indicates the true index of the filter constant £(1). z is the
polynomial variable, usually initialized as indicated at the beginning of the section.
For the example of the FIR filter given by f(£2) =1, f(£1) =4, f(0) = 6, one has
to put the input parameters to f=[1 4 6 4 1] und fkmin=-2. The result F will be
a Scilab rational function. The command showfilt (F,’F’) will show the result as

2 1 -1 -2
F(z)=z + 4z + 6 + 4z + z

[f,fkmin] = iztrans(F) performs the inverse z-transform. The input parameter F
has to be a rational function which represents a FIR filter, i.e. which has only
one power of z in the denominator. The return parameters are as should be the
input parameters of ztrans. The vector f contains the filter constants and fkmin
indicates the true index of the filter constant f(1).

H = compos(F,G) calculates the compostion F(G(Z)) of two Laurent polynomials. It
will be mainly used for expressions like H(—z"!). This may be generated by
compos (H,-z"(-1)) if H is a properly defined Laurent polynomial (FIR filter) with
z as polynomial variable.

table = tabfiltco(F) furnishes a table of the filter coefficients for the Laurent poly-
nomial (FIR) filter given by F. Here the output of tabfiltco(z"2*(1+z~(-1))"5)

(compare to the example for showfilt below)
ans =

WNHFRFORFN
D T
—

o

showfilt (F,’F’) has been mentioned already and furnsihes the output of the filter F
as this is desired for filters. The second parameter is optional, if omitted only the
part at the right of the equal sign is shown as for showfilt(z"2*(1+z"~(-1))"5)

(compare to the example for tabfiltco above)
2 1 -1 -2 -3
z + 5z + 10 + 10z + 5z + z

6 Coding experiments

The following functions are available

x = scanWL(W,p) puts the wavelet coefficients of image data which are assembled in
a matrix W as they may be obtained for example by W = imwt(A,’FBI’,steps);
into a column vector. This is done in such a way that one gets an optimal data
reduction using runlength coding. First the HH subband is scanned row-wise. Then
the values of the HG subbands are put column-wise into the output vector x, starting
with the subband belonging to the most coarse scale. Afterwards the values of the
GH subbands are put row-wise to x. Finally the values of the GG subbands are
transferred in the zigzag order indicated in figure 6, first the values of the subbands
belonging to a more coarse scale.

o

SRS

TN

Figure 6: Scanning of GG subbands by the macro scanWL

[y,mfv] = runlength(x,mfv) performs a runlength coding of the numerical data in
the vector x. The optional parameter mfv (“most frequent value”) indicates which

10

value is coded by its runlength. This should be a very frequent value. If the second
input parameter is not specified, the value of the parameter mfv is determined as the
most frequent value in the data vector x. If several values have the same frequency,
the largest one is chosen. The result of the run length coding is put in the matrix
y which has two columns. In each row the value in the first column indicates the
number of values mfv, the value in the second column gives the next value different
from mfv in the input data. There may be an exception in the last row of y: if mfv
is the last value in x, then the first column there is the runlength of mfv reduced by
1 and in the second column the value mfv itself.
Example:

x=[0,0,0,4,0,0,,5,0,0,0,0,2,0,0] ;y=runlength(x)
furnishes the following vector y

o N W
O N O

B = deadzone(A,d,mfv) simulates a dead zone quantization. The optional parameter d
is the value of the threshold which is half the length of the dead zone. The default
value of d is 1. The parameter mfv (“most frequent value”) determines the center of
the dead zone. For most applications this will be 0. If it is not specified, it will be
calculated as the most frequent value in the input data in A, if several values have
the same frequency, the largest one is chosen. A is the vector or matrix containing
the input data. All matrix elements A(i,k) or vector components fulfilling

|ACi,k)-mfv] < d

are set to mfv, the others remain unchanged. The result will be saved in B which
is therefore a vector or matrix of the same size as A. Such a dead zone quantiza-
tion increases the effectivity of a subsequent runlength coding, as it increases the
frequency of the most frequent value. In many cases the heigth of the quantization
step is used as threshold d. This causes a doubling of the quantization step at mfv.

en = entrop(x) calculates the entropy of the data in the input vector or matrix x. If py
denotes the relative frequency of the value indexed by k, the entropy is

- Z pr 108, (pr)
k

where the sum extends to all values in x. The logarithm to base 2 may be calcu-

lated by log,(px) = In(px)/In(2). If pr, = 0, then the undefined value py log,(py)

has to be replaced by 0 which is the limit lirr(l)x - logy(x). The calculation of the
T—

entropy permits an estimation of the need for memory for the data in x. The
entropy indicates the theoretical need for minimal memory per bit using optimal
coding. The practical need for memory for the data in x will therefore be larger
than length(x)*entrop(x).

11

A Appendix

A.1 Treating audio data

The functions described here belong to Scilab and are not part of the toolbox wavelib.
This section is added to give a short review! how audio data in the Waveform Audio
File Format (WAVE) with the filename extension .wav may be treated in the context of
applications of the wavelet transform. Reading audio data is done by

[x,sf,bits]=wavread(’ filename.wav’) ;

where the string filename may contain a path. The sampled audio data are available in
the matrix x which will have two rows in the case of stereo data or be a row vector for
mono. sf gives the sampling frequency, a usual value is 44100 and bits indicates the
number of bits per sample, 16 is a frequently used value.

Writing audio data may be done by

wavwrite(x,sf,bits,’ filename.wav’);

where the string filename may contain a path. The parameters sf und bits have the
same signification as for reading by wavread. If the parameter bits is omitted, it will be
replaced by its default value 16, which is quite usual. But the parameter sf should be
specified because otherwise it gets the default value 22 050 which is quite unusual today
and which may lead to surprises playing the resulting audio file. Therefore if you read
some data, treat them and write the modified data, it is recommended to specify explicitly
sf by the value obtained by wavread. Note that reading and subsequent rewriting of the
unchanged audio data may lead to roundoff errors. The resulting relative error may attain
0.00009 which is quite large.

To get informations on further functions for treating audio data see the chapter “Sound
file handling” in the help pages.

IThis section essentially relies on section 23 of the german introduction “Kurzeinfithrung in Scilab”,
see the link on the title page.

12

	Getting started
	Scaling functions and wavelets
	Wavelet transforms for one dimensional signals
	One step transforms
	Cascaded transforms

	Treatment of image data
	Wavelet transforms for image data
	In- and output of image data

	Treating filters
	Coding experiments
	Appendix
	Treating audio data

