
<< template template

template >> template > mode

mode
sets or queries the mode echoing Scilab instructions in the console

Syntax

mode(k)
k = mode()

Arguments

k

integer from -1 to 6: chosen or current execution / echoing mode.

Description

mode(k) allows to choose how informations are displayed in the console during the execution of Scilab instructions. If
these instructions include a mode one, following ones in the same environment are echoed according to the new
mode. A semicolon appended to any instruction always cancels the display of its result, whatever is the current
execution mode.

Contexts
mode(..) and other instructions can be used and executed in various contexts:

Functions (F): a function written in Scilab language may include mode instructions. After being compiled and
called, effects of an inner mode instruction are tagged with a F in the table herebelow. By default, instructions in
functions are run in silent mode mode(-1), whatever is the current mode in the calling environment.

Scripts (S): Scilab instructions written in a file (typically with the .sce extension) out of any function definition
may include mode instructions. When such a file is run with exec(filename) or exec(filename, mode_k), effects of
a mode instruction in the executed file are tagged with a S in the table herebelow. By default, scripts are run in
mode(3) mode, whatever is the current mode in the calling environment. This is overridden with the mode_k
option.

Console (C): Scilab instructions directly entered in the console are always displayed as entered. Effects of the
current mode or of any forthcoming mode instruction entered in the console are tagged with a C in the table
herebelow. By default, results of instructions run in the console are displayed in mode(2).

execstr(T): This function accepts a matrix of text T. Each component is executed as a series of Scilab
instructions, that may include mode ones. Effects of any forthcoming mode instruction met in the matrix are tagged
with a T (as Text) in the table herebelow. By default, all instructions are run in silent mode mode(-1), whatever is
the current mode in the calling environment running execstr().

Callbacks (K): a callback is a unique string in which Scilab instructions are written. This string is assigned to an
interactive component such as the item of a menu, a checkbox, etc. The instructions are executed when the
component is activated by an interaction: the menu is selected, the checkbox is checked or unchecked, etc. A
callback may include some mode instructions. The instructions of a callback are always executed directly at the
console level. Their effects remain in the console after the callback is completed. Effects of a mode instruction
used in a callbacK are tagged with a K in the table herebelow.

Features

mode # -1 0 1 2 3 4 6

Displays instructions [a] C C C S C C S C S C S K

Displays results [b] always always always always always always

Step by step [s] S F K S F T K

Compact [c] C++ + ++ SFT + CK++ SFT+ S+

Comments [d] [e] [f] [g] [h] [h,i]

Comments
[a]: In normal modes, instructions are displayed with the --> heading prompt. In step-by-step modes, >> is used

instead.

[b]: provided that no semicolon is appended.

[c]: "+" means: no extra blank line after results. "++" means: no extra blank line neither after completed instructions,
nor after results.

[d]: Default silent mode in functions and with execstr().

[e]: mode(5) is equivalent to mode(1) but must not be used.

[f]: Default mode in the console.

[g]: Default exec() mode.

[h]: Any comment // is displayed without prompting and being stepped.
Some parasitic --> prompts and extra blank lines may be sometimes displayed (bug).
A callback is always made of a unique string of instructions, as if they were specified and run on a single
row. Therefore, both available stepping execution modes are activable but useless in any callback.

[i]: mode(7) does the same but must not be used.

[s]: The step-by-step mode stops after each line of instruction(s) and waits for the user pressing the <enter> or
p<enter> keys to go on. Entering p enters the pause mode. These modes may be used for instance in demos, or
as a raw debugging mode.

The mode in the calling environment is never changed after using mode(..) in a called function, in an executed
script.sce or as an execstr() input, after the execution is completed and returns. When mode(k) is used in a
callback that is executed, it becomes and remains the actual echoing mode in the console after the end of the
callback.

Output intentionnally displayed by functions like disp() or mprinf() are never cancelled, even with mode(-1).

mode(5), mode(7), and other unregistered values may be accepted but should not be used: they could be removed
or redefined in the future.

Examples

In a function():

function example_mode(level_mode)
disp(mode());
mode(level_mode)
a = 3

endfunction

mode(2)
example_mode(0)
mode()
example_mode(1)
example_mode(2)

With exec(script, mode):

ins = [
"mprintf(""Default execution mode: %d\n"", mode())"
"mode(i)"

"mprintf(""New active mode: %d\n"", mode())"
"// A new comment"
"a = rand(2,4)"
"b = %pi;"
"c = %s;"
];

fn = TMPDIR + "\test_mode.sce";
mputl(ins, fn);
//
mode(2)
i = 1;
exec(fn)
mode()
exec(fn, 0)
i = 3; // instructions are displayed
exec(fn, 3)
i = 4; // displayed instructions + stepped mode. "p<enter>" enters the paused mode
exec(fn, 4)

With execstr():

ins = [
"mprintf(""Default execution mode: %d\n"", mode())"
"mode(1) // Entering the compact mode"
"mprintf(""New active mode: %d\n"", mode())"
"a = rand(2,4)"
"b = 1"
"c = %pi"
];

mode(2)
execstr(ins)
mode() // The initial mode is restored

In a callback (here a menu):

mode(2)
uimenu("parent",0,"Label","mode_test",..

"callback", "disp(mode()); mode(1); a = rand(2,4), pwd(),");
// Click on the "mode_test" menu and see what is displayed in the console
mode()
delmenu mode_test

See also

exec
execstr
semicolon
debug
pause
getscilabmode
warning mode
funcprot
ieee

History

Version Description

6.0 mode(4) is now stepped and can be paused, in scripts as well as in functions.
For/in scripts, mode(4) now displays each line of instructions, and displays
results in a compact way. It can be used for demos.
Callbacks were always executed in silent mode(-1). They are now executed by
default in the current mode().

