%A program to decompact sediments and then backstrip well A1NC198 clear n = 10; % initial parameters ( actual thicknesses from boreholes) z = zeros(1,n); z(1) = 252; % Thickness of the Continental Mesozoic, in m z(2) = 215; % Thickness of the Post Tasselian in m z(3) = 378; % Dalma z(4) = 891; % Binem z(5) = 44; % Tadrart z(6) = 78; % Akakus z(7) = 106; % Tannezuft z(8) = 201; % Mamuniyat z(9) = 1534; % PreGlacial Cambro-Ordovician z(10) = 1; % Bottom meter of C-O so that the column starts at zero % Surface porosity for each formation from Sclater & Christie fi = zeros(1,n); fi(1) = 0.50; % surface porosity of the Continental Mesozoics sandstones facies; fi(2) = 0.51; % surface porosity of the Post Tasselian sandstones facies; fi(3) = 0.51; % surface porosity of the Dalma formation; fi(4) = 0.55; % surface porosity of the Binem Formation; fi(5) = 0.515; % surface porosity of the Tadrart; fi(6) = 0.55; % surface porosity of the Akakus; fi(7) = 0.61; % surface porosity of the Tannezuft; fi(8) = 0.50; % surface porosity of the Mamuniyat; fi(9) = 0.49; % surface porosity of the PreGlacial Cambro Ordovician fi(10)= 0.49; % Bottom metre of C-O % fi-depth coefficent for each formation c = zeros(1,n); c(1) = 0.000280; % fi-depth coefficent in m^-1 for sandstones of the Continental Mesozoic; c(2) = 0.000310; % fi-depth coefficent in m^-1 for sandstones of the Post Tasselian; c(3) = 0.000310; % fi-depth coefficent in m^-1 for the Dalma Fm; c(4) = 0.000405; % fi-depth coefficent in m^-1 for the Binem formation; c(5) = 0.000295; % fi-depth coefficent in m^-1 for the Tadrart formation; c(6) = 0.000420; % fi-depth coefficent in m^-1 for the Akakus formation; c(7) = 0.000485; % fi-depth coefficent in m^-1 for the Tannezuft shaley sequence; c(8) = 0.000280; % fi-depth coefficent in m^-1 for the Mamuniyat formation; c(9) = 0.000270; % fi-depth coefficent in m^-1 for the PreGlacial Cambro Ordovician formation; c(10)= 0.00027; % Bottom metre %depth to the top of the formations y = zeros(1,n); y(1) = 0; % Continental Mesozoic Sandstones y(2) = 252; % Post Tasselian Sandstones y(3) = 467; % Dalma Fm y(4) = 845; % Binem Fm y(5) = 1736; % Tadrart Fm y(6) = 1780; % Akakus Fm y(7) = 1858; % Tannezuft shales y(8) = 1964; % Mamuniyat Fm y(9) = 2164; % Preglacial Cambro-Ordovician sandstones y(10)= 3699; % Lowest Metre yBas = 3700; % density at the surface conditions rho_w = 1030; % density of the sea water Kg/m-3; rho_m = 3300; % density of the mantle rho = zeros(1,n); rho(1) = 2655; % grain density of the Continental Mesozoic Sandstones rho(2) = 2660; % grain density of the Post tasselian Sandstones rho(3) = 2660; % grain density of the Dalma Fm rho(4) = 2690; % grain density of the Binem Fm rho(5) = 2655; % grain density of the Tadrart Fm rho(6) = 2680; % grain density of the Akakus Fm rho(7) = 2710; % grain density of the Tannezuft Fm rho(8) = 2655; % grain density of the Mamuniyat Fm rho(9) = 2650; % grain density of the Cambro-Ordovician sandstones rho(10) = 2650; % grain density of the bottom metre %The paleosea-levels compared to the present day sea-level taken form the %Exxon curves sl(1) = 205; % The Cretaceous (Continental Mesozoic) sl(2) = 20; % The Upper Jurrassic (Post Tasselian) sl(3) = 20; % Mississippian (Dalma Fm) sl(4) = 105; % Late Devonian (Binem Fm) sl(5) = 175; % Early-Mid Devonian (Tadrart Fm) sl(6) = 105; % Mid-Late Silurian (Akakus Fm) sl(7) = 145; % Early Silurian (Tannezuft Fm) sl(8) = 140; % Hirnantian (Mamuniyat Rm) sl(9) = 165; % Cambro-Ordovician sl(10) = 100; % Start of the Cambrian sl = fliplr(sl); %The Paleobathymetry or water depth. Wd(1) = 0; % The Cretaceous (Continental Mesozoic) Wd(2) = 0; % The Upper Jurrassic (Post Tasselian) Wd(3) = 20; % Mississippian (Dalma Fm) Wd(4) = 40; % Late Devonian (Binem Fm) Wd(5) = 0; % Early-Mid Devonian (Tadrart Fm) Wd(6) = 60; % Mid-Late Silurian (Akakus Fm) Wd(7) = 100; % Early Silurian (Tannezuft Fm) Wd(8) = 50; % Hirnantian (Mamuniyat Rm) Wd(9) = 5; % Cambro-Ordovician Wd(10) = 5; % Start of the Cambrian Wd = fliplr(Wd); x = zeros(n,n); %create an array for the depths to the top of the units over time for it = 1:n eps = 0.0001 ; error = 2*eps ; x_top = 0; for in = n-(it-1):n x_iter = 1; eps = 0.0001 ; error = 2*eps ; while error > eps x(in,it) = z(in) - fi(in)/c(in)*(exp(-c(in)*y(in))-exp(-c(in)*(y(in)+z(in)))) + fi(in)/c(in)*(exp(-c(in)*x_top)-exp(-c(in)*x_iter)) + x_top; error = abs(x(in,it)-x_iter)/x_iter; x_iter = x(in,it); end x_top = x(in,it); % reset for the next layer end end xu = flipud(x); % This creates a matrix with time on the x-axis and each layer on the z-axis t = [513 445.6 443.7 440.8 416 386 359.2 318 223.4 97]; %prepare for the plot % carry out the backstripping %calculating the porosity for each layer through time fi_depth = zeros(n,n); rho_i = zeros(1,n); rho_b = zeros(1,n); tecsub = zeros(1,n); for it = 1:n x_top = 0; for in = n-(it-1):n fi_depth(in,it) = (fi(in)/c(in)) * ((exp(-c(in)*x_top)-exp(-c(in)*x(in,it)))/(x(in,it) - x_top)); rho_i(in) = (fi_depth(in,it)*rho_w + (1-fi_depth(in,it))*rho(in))*(x(in,it)-x_top)/x(n,it); x_top = x(in,it); end rho_i; rho_b(it) = sum(rho_i); tecsub(it) = x(n,it)*((rho_m - rho_b(it))/(rho_m - rho_w)) -sl(it)*(rho_w/(rho_m-rho_w)) + (Wd(it)-sl(it)); end %Plot of the complete output of the program showing both the decompacted %subsidence and the tectonic subsidence figure(1,'position',[0,0,1024,800]), clf title ('Subsidence of the Kufrah Basin Well A1-NC198') subplot (2,1,1) plot (-t,-xu(1,1:n),'bo-',-t,-xu(2,1:n),'bo-',-t,-xu(3,1:n),'bo-',-t,-xu(4,1:n),'kx-',-t,-xu(5,1:n),'gx-',-t,-xu(6,1:n),'rd-',-t,-xu(7,1:n),'rd-',-t,-xu(8,1:n),'c^-',-t,-xu(9,1:n),'y^-',-t,-xu(10,1:n),'y^-','LineWidth',2) set (gca,'FontSize',14) title ('The Decompacted Sedimetary thickness for the Kufrah basin','FontSize',18) xlabel ('Time (Ma)','FontSize',16) ylabel ('Depth of each uncompacted layer (m)','FontSize',16) %legend ('Cambro-Ordivician','off','off','off','off','off','Black Shale','Silurian','hide','hide','hide','Devonian','hide','hide','hide','hide','Carboniferous','location','SouthWest') subplot (2,1,2) plot (-t,-tecsub,'o-','LineWidth',2) set (gca,'FontSize',14) title ('Water loaded tectonic subsidence','FontSize',18) xlabel ('Time (Ma)','FontSize',16) ylabel ('The Tectonic subsidence (m)','FontSize',16) axis ([-550 0 -2000 0])